Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 151(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602508

RESUMO

The skull roof, or calvaria, is comprised of interlocking plates of bones that encase the brain. Separating these bones are fibrous sutures that permit growth. Currently, we do not understand the instructions for directional growth of the calvaria, a process which is error-prone and can lead to skeletal deficiencies or premature suture fusion (craniosynostosis, CS). Here, we identify graded expression of fibronectin (FN1) in the mouse embryonic cranial mesenchyme (CM) that precedes the apical expansion of calvaria. Conditional deletion of Fn1 or Wasl leads to diminished frontal bone expansion by altering cell shape and focal actin enrichment, respectively, suggesting defective migration of calvarial progenitors. Interestingly, Fn1 mutants have premature fusion of coronal sutures. Consistently, syndromic forms of CS in humans exhibit dysregulated FN1 expression, and we also find FN1 expression altered in a mouse CS model of Apert syndrome. These data support a model of FN1 as a directional substrate for calvarial osteoblast migration that may be a common mechanism underlying many cranial disorders of disparate genetic etiologies.


Assuntos
Fibronectinas , Nascimento Prematuro , Crânio , Animais , Feminino , Humanos , Camundongos , Sinais (Psicologia) , Modelos Animais de Doenças , Fibronectinas/metabolismo , Osteoblastos , Crânio/citologia , Crânio/crescimento & desenvolvimento , Crânio/metabolismo , Suturas
2.
bioRxiv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38585989

RESUMO

The transition from fins to limbs has been a rich source of discussion for more than a century. One open and important issue is understanding how the mechanisms that pattern digits arose during vertebrate evolution. In this context, the analysis of Hox gene expression and functions to infer evolutionary scenarios has been a productive approach to explain the changes in organ formation, particularly in limbs. In tetrapods, the transcription of Hoxd genes in developing digits depends on a well-characterized set of enhancers forming a large regulatory landscape1,2. This control system has a syntenic counterpart in zebrafish, even though they lack bona fide digits, suggestive of deep homology3 between distal fin and limb developmental mechanisms. We tested the global function of this landscape to assess ancestry and source of limb and fin variation. In contrast to results in mice, we show here that the deletion of the homologous control region in zebrafish has a limited effect on the transcription of hoxd genes during fin development. However, it fully abrogates hoxd expression within the developing cloaca, an ancestral structure related to the mammalian urogenital sinus. We show that similar to the limb, Hoxd gene function in the urogenital sinus of the mouse also depends on enhancers located in this same genomic domain. Thus, we conclude that the current regulation underlying Hoxd gene expression in distal limbs was co-opted in tetrapods from a preexisting cloacal program. The orthologous chromatin domain in fishes may illustrate a rudimentary or partial step in this evolutionary co-option.

3.
bioRxiv ; 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36711975

RESUMO

The skull roof, or calvaria, is comprised of interlocking plates of bone. Premature suture fusion (craniosynostosis, CS) or persistent fontanelles are common defects in calvarial development. Although some of the genetic causes of these disorders are known, we lack an understanding of the instructions directing the growth and migration of progenitors of these bones, which may affect the suture patency. Here, we identify graded expression of Fibronectin (FN1) protein in the mouse embryonic cranial mesenchyme (CM) that precedes the apical expansion of calvarial osteoblasts. Syndromic forms of CS exhibit dysregulated FN1 expression, and we find FN1 expression is altered in a mouse CS model as well. Conditional deletion of Fn1 in CM causes diminished frontal bone expansion by altering cell polarity and shape. To address how osteoprogenitors interact with the observed FN1 prepattern, we conditionally ablate Wasl/N-Wasp to disrupt F-actin junctions in migrating cells, impacting lamellipodia and cell-matrix interaction. Neural crest-targeted deletion of Wasl results in a diminished actin network and reduced expansion of frontal bone primordia similar to conditional Fn1 mutants. Interestingly, defective calvaria formation in both the Fn1 and Wasl mutants occurs without a significant change in proliferation, survival, or osteogenesis. Finally, we find that CM-restricted Fn1 deletion leads to premature fusion of coronal sutures. These data support a model of FN1 as a directional substrate for calvarial osteoblast migration that may be a common mechanism underlying many cranial disorders of disparate genetic etiologies.

4.
Proc Natl Acad Sci U S A ; 119(10): e2120150119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35238632

RESUMO

The origin and diversification of appendage types is a central question in vertebrate evolution. Understanding the genetic mechanisms that underlie fin and limb development can reveal relationships between different appendages. Here we demonstrate, using chemical genetics, a mutually agonistic interaction between Fgf and Shh genes in the developing dorsal fin of the channel catfish, Ictalurus punctatus. We also find that Fgf8 and Shh orthologs are expressed in the apical ectodermal ridge and zone of polarizing activity, respectively, in the median fins of representatives from other major vertebrate lineages. These findings demonstrate the importance of this feedback loop in median fins and offer developmental evidence for a median fin-first scenario for vertebrate paired appendage origins.


Assuntos
Nadadeiras de Animais/embriologia , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas Hedgehog/metabolismo , Ictaluridae/embriologia , Animais , Padronização Corporal/genética , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Ictaluridae/anatomia & histologia , Ictaluridae/metabolismo
5.
Nat Genet ; 53(9): 1373-1384, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34462605

RESUMO

The bowfin (Amia calva) is a ray-finned fish that possesses a unique suite of ancestral and derived phenotypes, which are key to understanding vertebrate evolution. The phylogenetic position of bowfin as a representative of neopterygian fishes, its archetypical body plan and its unduplicated and slowly evolving genome make bowfin a central species for the genomic exploration of ray-finned fishes. Here we present a chromosome-level genome assembly for bowfin that enables gene-order analyses, settling long-debated neopterygian phylogenetic relationships. We examine chromatin accessibility and gene expression through bowfin development to investigate the evolution of immune, scale, respiratory and fin skeletal systems and identify hundreds of gene-regulatory loci conserved across vertebrates. These resources connect developmental evolution among bony fishes, further highlighting the bowfin's importance for illuminating vertebrate biology and diversity in the genomic era.


Assuntos
Evolução Biológica , Evolução Molecular , Genoma/genética , Rajidae/genética , Rajidae/fisiologia , Animais , Cromatina/genética , Peixes , Rajidae/imunologia , Sequenciamento Completo do Genoma
6.
Cell ; 184(4): 899-911.e13, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33545089

RESUMO

Changes in appendage structure underlie key transitions in vertebrate evolution. Addition of skeletal elements along the proximal-distal axis facilitated critical transformations, including the fin-to-limb transition that permitted generation of diverse modes of locomotion. Here, we identify zebrafish mutants that form supernumerary long bones in their pectoral fins. These new bones integrate into musculature, form joints, and articulate with neighboring elements. This phenotype is caused by activating mutations in previously unrecognized regulators of appendage patterning, vav2 and waslb, that function in a common pathway. This pathway is required for appendage development across vertebrates, and loss of Wasl in mice causes defects similar to those seen in murine Hox mutants. Concordantly, formation of supernumerary bones requires Hox11 function, and mutations in the vav2/wasl pathway drive enhanced expression of hoxa11b, indicating developmental homology with the forearm. Our findings reveal a latent, limb-like pattern ability in fins that is activated by simple genetic perturbation.


Assuntos
Osso e Ossos/embriologia , Extremidades/embriologia , Peixe-Zebra/embriologia , Actinas/metabolismo , Nadadeiras de Animais/embriologia , Animais , Sequência de Bases , Padronização Corporal , Sistemas CRISPR-Cas/genética , Linhagem da Célula , Epistasia Genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Genes Reporter , Células HeLa , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Mutação/genética , Fenótipo , Filogenia , Transdução de Sinais/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
7.
Nat Ecol Evol ; 4(4): 659, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32157252

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
Philos Trans R Soc Lond B Biol Sci ; 374(1769): 20180205, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30967083

RESUMO

The cuckoo catfish, Synodontis multipunctatus, is the only known obligate brood parasite among fishes, exploiting the parental care of mouthbrooding cichlids endemic to Lake Tanganyika. Comparisons of this system to brood parasitism in birds may reveal broader principles that underlie the evolution of this life-history strategy in vertebrates. However, little is known about the features of the cuckoo catfish that enable this species to successfully parasitize cichlids. Here, we examine early ontogeny of the cuckoo catfish and compare it to that of its cichlid hosts as well as a non-parasitic congener. We found that cuckoo catfish embryos develop and hatch in advance of host embryos, and begin feeding on cichlid young just as they start to hatch. Overall timing of ontogeny in the cuckoo catfish was found to be similar to that of the substrate-spawning congener Synodontis lucipinnis, suggesting that more rapid development of the cuckoo catfish relative to cichlids is not a unique adaptation to brood parasitism. However, we found that cuckoo catfish progeny exhibit extensive morphological differences from S. lucipinnis, which may represent adaptations to brood parasitism. These life-history observations reveal both similarities and differences between the cuckoo catfish system and brood parasitism in other lineages. This article is part of the theme issue 'The coevolutionary biology of brood parasitism: from mechanism to pattern'.


Assuntos
Peixes-Gato/fisiologia , Ciclídeos/parasitologia , Interações Hospedeiro-Parasita , Traços de História de Vida , Adaptação Biológica , África , Animais , Lagos
9.
Genetics ; 207(2): 609-623, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28835471

RESUMO

Large-scale forward genetic screens have been instrumental for identifying genes that regulate development, homeostasis, and regeneration, as well as the mechanisms of disease. The zebrafish, Danio rerio, is an established genetic and developmental model used in genetic screens to uncover genes necessary for early development. However, the regulation of postembryonic development has received less attention as these screens are more labor intensive and require extensive resources. The lack of systematic interrogation of late development leaves large aspects of the genetic regulation of adult form and physiology unresolved. To understand the genetic control of postembryonic development, we performed a dominant screen for phenotypes affecting the adult zebrafish. In our screen, we identified 72 adult viable mutants showing changes in the shape of the skeleton as well as defects in pigmentation. For efficient mapping of these mutants and mutation identification, we devised a new mapping strategy based on identification of mutant-specific haplotypes. Using this method in combination with a candidate gene approach, we were able to identify linked mutations for 22 out of 25 mutants analyzed. Broadly, our mutational analysis suggests that there are key genes and pathways associated with late development. Many of these pathways are shared with humans and are affected in various disease conditions, suggesting constraint in the genetic pathways that can lead to change in adult form. Taken together, these results show that dominant screens are a feasible and productive means to identify mutations that can further our understanding of gene function during postembryonic development and in disease.


Assuntos
Desenvolvimento Ósseo/genética , Genes Dominantes , Mutagênese , Pigmentação da Pele/genética , Peixe-Zebra/genética , Animais , Haplótipos , Fenótipo , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética
10.
Dev Cell ; 35(3): 263-4, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26555045

RESUMO

The skeleton articulates at specialized junctions, or joints. Although many factors that specify joints are known, how these different mechanisms are integrated to define the joint remains unclear. In this issue of Developmental Cell, Askary et al. (2015) utilize zebrafish to identify genetic regulatory mechanisms of joint specification and differentiation.


Assuntos
Osso e Ossos/metabolismo , Cartilagem Articular/metabolismo , Diferenciação Celular/fisiologia , Condrócitos/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra/metabolismo , Animais
11.
Nat Commun ; 5: 3700, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24739280

RESUMO

The striking diversity of bird beak shapes is an outcome of natural selection, yet the relative importance of the limitations imposed by the process of beak development on generating such variation is unclear. Untangling these factors requires mapping developmental mechanisms over a phylogeny far exceeding model systems studied thus far. We address this issue with a comparative morphometric analysis of beak shape in a diverse group of songbirds. Here we show that the dynamics of the proliferative growth zone must follow restrictive rules to explain the observed variation, with beak diversity constrained to a three parameter family of shapes, parameterized by length, depth and the degree of shear. We experimentally verify these predictions by analysing cell proliferation in the developing embryonic beaks of the zebra finch. Our findings indicate that beak shape variability in many songbirds is strongly constrained by shared properties of the developmental programme controlling the growth zone.


Assuntos
Bico/embriologia , Tentilhões/embriologia , Modelos Biológicos , Morfogênese/fisiologia , Filogenia , Animais , Bico/anatomia & histologia , Pesos e Medidas Corporais , Proliferação de Células , Simulação por Computador , Tentilhões/anatomia & histologia , Seleção Genética
12.
Development ; 141(3): 629-38, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24449839

RESUMO

A defining feature of vertebrates (craniates) is a pronounced head supported and protected by a cellularized endoskeleton. In jawed vertebrates (gnathostomes), the head skeleton is made of rigid three-dimensional elements connected by joints. By contrast, the head skeleton of modern jawless vertebrates (agnathans) consists of thin rods of flexible cellular cartilage, a condition thought to reflect the ancestral vertebrate state. To better understand the origin and evolution of the gnathostome head skeleton, we have been analyzing head skeleton development in the agnathan, lamprey. The fibroblast growth factors FGF3 and FGF8 have various roles during head development in jawed vertebrates, including pharyngeal pouch morphogenesis, patterning of the oral skeleton and chondrogenesis. We isolated lamprey homologs of FGF3, FGF8 and FGF receptors and asked whether these functions are ancestral features of vertebrate development or gnathostome novelties. Using gene expression and pharmacological agents, we found that proper formation of the lamprey head skeleton requires two phases of FGF signaling: an early phase during which FGFs drive pharyngeal pouch formation, and a later phase when they directly regulate skeletal differentiation and patterning. In the context of gene expression and functional studies in gnathostomes, our results suggest that these roles for FGFs arose in the first vertebrates and that the evolution of the jaw and gnathostome cellular cartilage was driven by changes developmentally downstream from pharyngeal FGF signaling.


Assuntos
Evolução Biológica , Osso e Ossos/embriologia , Fatores de Crescimento de Fibroblastos/metabolismo , Cabeça/embriologia , Lampreias/embriologia , Osteogênese , Faringe/embriologia , Animais , Osso e Ossos/efeitos dos fármacos , Cartilagem/citologia , Cartilagem/efeitos dos fármacos , Cartilagem/embriologia , Embrião não Mamífero , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Lampreias/genética , Larva/efeitos dos fármacos , Larva/metabolismo , Modelos Biológicos , Crista Neural/citologia , Crista Neural/efeitos dos fármacos , Crista Neural/metabolismo , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Faringe/efeitos dos fármacos , Faringe/metabolismo , Pirróis/farmacologia , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Tretinoína/farmacologia , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...